SENEN Solutions

An open hardware company

Seven Solutions (info@sevensols.com)

José Rodríguez (jrodriguez@sevensols.com)

Index

1. Introduction to the company

- High-performance platforms for embedded real-time vision.
- 3. Security & video surveillance
- 4. Creating technology for science
- 5. Summary & conclusions

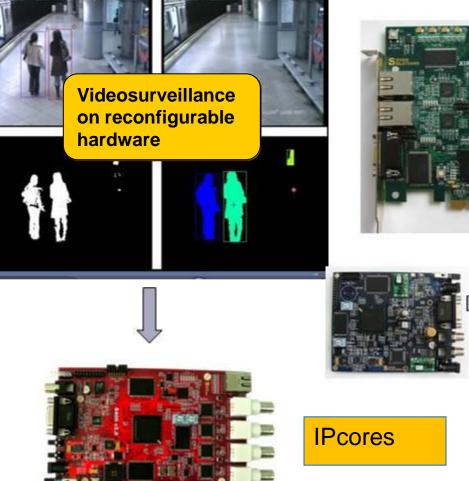
Introduction to the company: **7S SERVICES AND PRODUCTS**

7S Company

Origin

- Created in 2006 as spin-off from the University of Granada
- Technology-based created in the framework of several EU projects by a research group of the University of Granada.
- Research and innovation awards
 - AJE award to the best young company in Granada 2008
 - Bancaja National award to young entrepreneurs 2008
 - Entrepreneur Award XXI in Andalucía 2009

Team: 12 active workers as manpower		
1 Business administration	1 Secretary	1 Part-time accountant
1 CEO	1 R&D Director	1 Technician
2 Software engineers	2 Telecommunications engineers	2 Hardware engineers
		SR


Solution

Three company ages

- **First period (2006-2009)**
 - Prototyping boards and electronics design services
- Second period (2008-2011)
 - Videoanalytics solutions
- Third period (2010 now)
 - Industry for science

Company products & services

FPGA prototyping boards

1120

Biomedical portable systems for low vision

Company services & products

Services

- Electronics boards design and production
- Embedded software development (real-time, control...)
- HW/SW dependable systems & certification (*DO-254, DO-178B, IEC-615*)
- High-tech consulting & training
- Integration & turn-key solutions

Products

- Prototyping FPGA platforms(XircaV4, S400, SB, ViSmart, WR6)
- Custom electronic products: CODE, Sensonic, Ledlocal
- FPGA IP cores: Memory controllers, Ethernet UDP stack, motion detection, video-analytics, etc..
- White Rabbit products (Switch, Spec, FMC DIO, FMC TDC; FMC ADC.....)

Markets & customers

Experience in different fields:

- Security
- Automobiles, Aerospace and industrial sectors
- Biomedicine / Health
- Robotics
- Hi-tech training

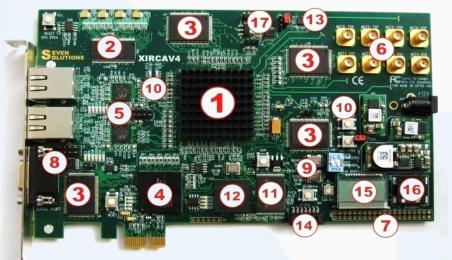
Some customers

- CERN (European Organization for Nuclear Research), GSI, DESY, NIK-HEF.
- IAA (Instituto Andaluz de Astrofísica, CSIC)
- Schepens Eye Institut (Harvard University), University of Genoa (Italy), University of Granada
- Telefónica I+D, NTGS,...
- Parque de las Ciencias de Granada, Sam Innovex,...

- Working team: high ratio of specialized Engineers and doctors.

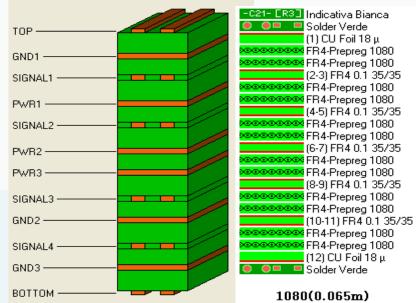
Passion for challenges!

High-performance platforms for **EMBEDDED REAL-TIME VISION**


 XircaV4 is a co-processing platform, based on FPGA (Virtex-4 of Xilinx).

Also works as a "stand-alone" platform

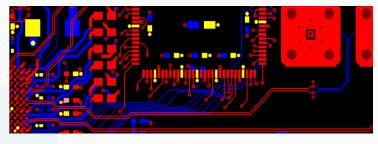
- Designed for real-time image processing, and IP-cores development and testing.
- It includes an FPGA device (Virtex 4), communication buses (PCI Express, MGT Rochet IO and Ethernet Gigabit), off-chip memory support (DDR and ZBT).
- The platform is fully supported with SoC and high-level synthesis design tools

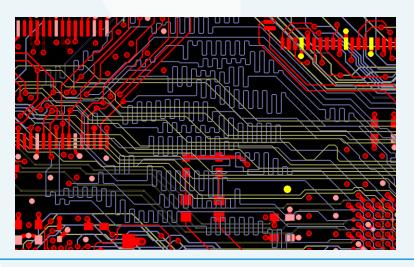


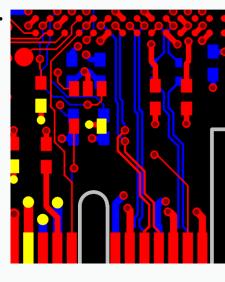
- **1) VIRTEX-4 FPGA** (XC4VFX100-10FFG1152).
- 2) 2 independent banks of **DDR SDRAM** (512Mb).
- 3) 4 Pipelined **SRAM** memory chips 72-Mbit.
- 4) 1 PCI Express port 1x.
- 5) 2 tri-speed **Ethernet PHY transceiver** 100/1000.
- 6) 8 SMA connectors connected to 2 Rockets IO.
- 7) 20 expansion pins.
- 8) 1 RS-232 Serial port.
- 9) 1 User clock, 100 MHz and 125 MHz.
- 10) 2 LEDs y 2 push buttons.
- 11) 2 Flash memories (32MB) connected to CPLD.
- 12) CPLD to arbitrate the local bus.
- 13) 4-Kb IIC EEPROM.
- 14) 1 JTAG configuration port.
- 15) 1 LCD display: 2 lines x 8 characters.
- 16) 1 Buzzer.
- 17) IIC Fan Controller.

Technical characteristics

- 12 layers
 - (6 planes and 6 routing layers)
- Minimum separation between paths: 0.095mm
- 1.6 mm thickness
- ▶ 3654 drills
- 9 different internal voltages
- Ecapsulated technology used:
 - Flip Chip BGA (FF1152), separation 1.0mm
 - CSP (Chip Scale Package), separation 0.5mm
 - TSSOP, TQFP, separation 0.6mm

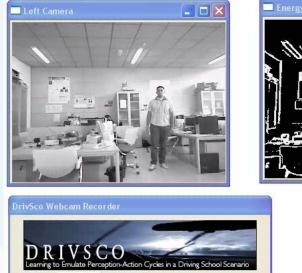


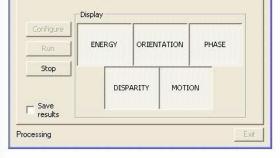


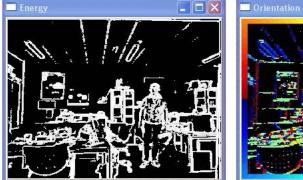


Technical Characteristics

- Controlled impedance (DDR, ZBT, Ethernet Gigabit, PCI-express, MGT RocketIO...):
 - 50 ohms (single traces).
 - 100 ohms (differential pairs).
- ▲ Signal Integrity simulations (Hyperlynx):
 - LineSim
 - BoardSim
 - Ussing IBIS models
- Paths length control (DDR, Differential pairs).

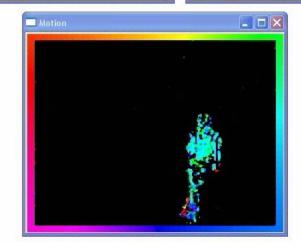


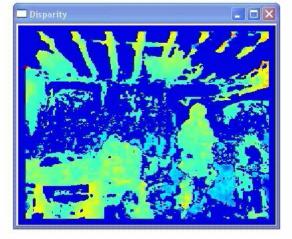



Coprocessing application example

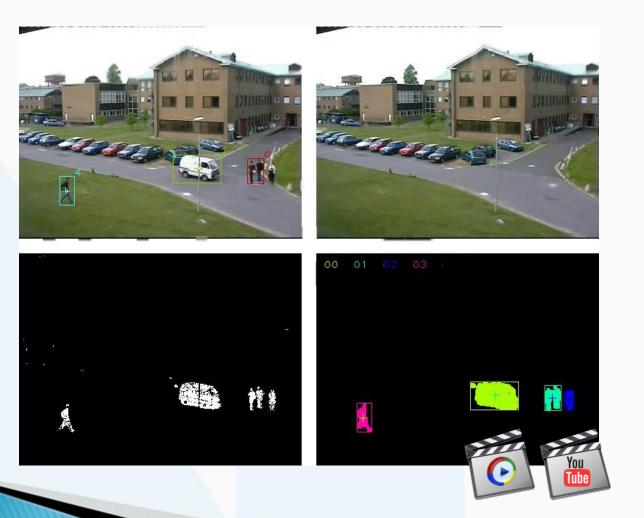
Demo developed by UGR for EU grant

Calibration Processing Parameters



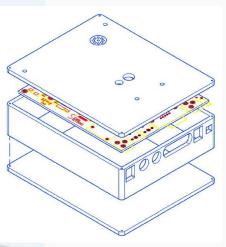


- 🗆 🗙


Vismart-4 multi-chip platform

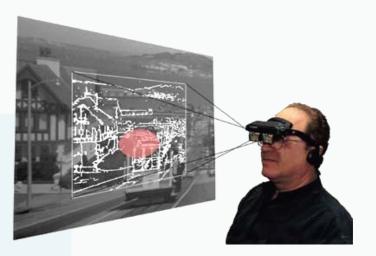
- High performance multi-chip FPGA platform (Spartan3 DSP)
- Stand-alone platform
- Hi scalability and memory support
- Fully supported peripherals
- SoC: direct C programming
- Parallel access to the cameras image streams:
 - ✓ 4 cameras can be used and processed in parallel.

On-chip videoanalytics example



SB portable platform

- Stand-alone platform.
- Portable. 5000mA battery for more than 10 hours of autonomy
- EDK support for direct C programming
- Periphericals fully supported



SB Application example

 Collaboration with UGR, UMU & Schepens Eye Institute (Harvard University),

- Application oriented to low vision patients with visual deficiencies such as tunnel vision, foveal vision lost, etc.
- On-chip processing: zoom, detection of edges, binarization, etc.

Embedded Video-Analytics SECURITY & VIDEOSURVEILLANCE.

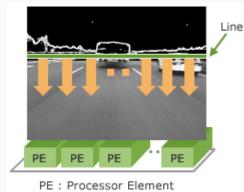
7S video analytics advantage

Embedded hardware FPGA technology.

100x processing speed up thanks to the

utilization of specific hardware (FPGA,DSP)

100x durability


(no moving elements, low power consumption, etc)

- **10x** less power consumption.
- Autonomous system
- Scalable system: flexible architecture

Expertise on distributed video surveillance solutions

IP Core for videoanalytics I

Multimodal background estimation

- Basic stage of videoanalytics capable to detect moving object on a stationary camera.
- Multimodal background model. <u>Capable of dealing with</u> <u>periodic movement</u> (waving trees, elevator movements, etc..) <u>without producing false alarms</u>.
- Applications: integration on smart IP cameras for security.
 - Ideal for distributed systems development

System accuracy example. From left to right: first image, input of a sequence with moving trees (Wallflower dataset). Second picture, background grounth-truh manually estimated. Third to fith, background models of well-known approaches. Last picture, our IP core results. .

IP Core for videoanalytics II

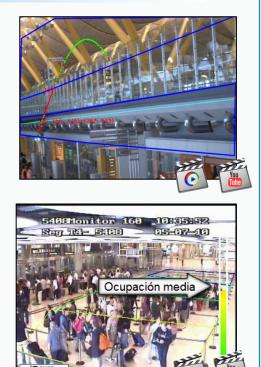
Resources & performance

- Resources on a Xilinx XC3SD3400aFG676 FPGA
 - 26% slices, 66% DSP48s.
 - Max operating frequency: 70 MHz.
- Performance:
 - One camera with 1280x1024 pixels resolution at 16 fps
 - Four cameras with VGA resolution up to 18 FPS.
 - It require a system clock of 66 MHz and external memory DDR2 interface as provided with Vismark multichip platform.
- Software functional model for evaluation.
- ► IP core provided as netlist or source format.

Distributed videosurveillance

- Computational power on edge devices
- Number of camera unlimited
- Access from anywhere in the world
- Flexible & scalable architecture
- Third party integration

iPhone/iPad/Android



References

 Virtual Roof in the Madrid/Barajas Terminal4 (detection of throwing objects)

 Queue estimation in T4 (Estimation of waiting time)

Video analysis: counting people and dynamic privacy in the University of Granada

26

References (II)

- Perimeter security combined with thermal video analysis in a solar plant (perimeter>8km), Castuera (ASSYCE)
- CCTV synchronized with microwaves barrier in a private parking
- Perimeter security in a solar plant, Escúzar, Moraleda (ASSYCE)

27

Creating technology for science **SEVEN SOLUTIONS**

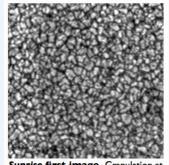
Capacities and expertise

- ► Technology for science:
 - Real time embedded software (DSP, microcontrolers, etc).
 - High performance processing with FPGA
 - IP cores design
 - System on Chip (SoC) design
 - High performance PCB design (FPGA, DSP, etc)
 - Safety critical design, test and certification
 - Embedded control systems

Creating technology for science

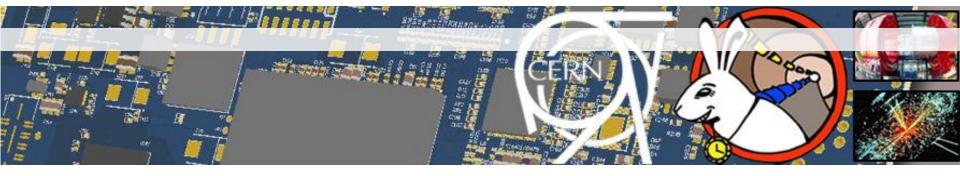
- CERN: White-Rabbit Project
 - Currently collaborating in the development of White Rabbit platform (WR6).
 - Design of hardware boards (high performance switch based on FPGA)
 - IP cores design (Wishbone serializer)
 - PCB fabrication, test and support.
- **Solution** ESA : European Spatial Agency (IAA)
 - Development of embedded software, FPGA boards and HDL code (RTEMS OS, DSP baremetal code, LEON-3 architectures, Rad-tolerant electronics)
 - Related project:
 - IMAX in Sunrise project
 - NOMAD in EXOMARS
 - SOPHI of Solar Orbiter





Creating technology for science

► IMAX Sunrise 2009



 $\begin{array}{l} \textbf{Sunrise first image.} Granulation at \\ disk center as seen in one of the \\ modulation states of the IMaX \\ instrument. Preliminary processed \\ thumbnail with a 4x4 binning. 256x256 \\ pixels (0."22/px). Exposure time: 1.5 s. \\ \lambda = 525.04 \text{ nm. Field of view: 56".} \end{array}$

EXAMPLE OF COLLABORATION THE WHITE RABBIT PROJECT

White Rabbit project

What is White Rabbit?

An Ethernet extension which provides:

- Synchronous mode precise time and frequency transfer.
- .Precision Time Protocol (IEEE1588) + Synchronous Ethernet + DMTD phase tracking
- Deterministic routing latency

Characteristics

- ~1000 nodes synchronized up to 10 Km
- Sub-nano second accuracy !!
- Selft-calibration

Development model

- Collaborative, industry and research centers (CERN, GSI, ...) but with commercial support.
- Open source

Applications

33

Solutions

7S role in White Rabbit project

White Rabbit Switch

White Rabbit integrated solutions: production,

customization, design, support and more...

WRS-3/18

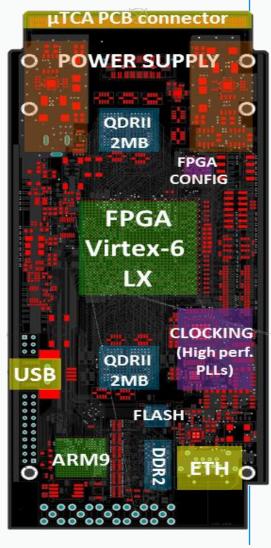
White Rabbit Switch v3

Standalone version with 18 SFP ports

White Rabbit Switch (WRS) is the key component of the White Rabbit Protocol that provides precision timing and high synchronization over an Ethernet-based network.

The WRS can be configured as master and sends its clock to all the nodes in the network using cascade architecture.

The WRS-3/18 version is a standalone version using 18 SFP connectors to synchronize the different nodes


- Time precision: sub-nanosecond timing.
- Scalability: 2000 nodes in the network
- Distance range: over 10km using fiber
- PTPv2, Sync-E
- Robustness configuration.
- RS-232 and USB debug.

WRS core board (SCB) components

The board main elements are:

- the High performance Virtex-6 FPGA (XC6VLX130T, XC6VLX240T or XC6VLX365T chips)
- ARM processor (AT91SAM9G45). Wellknown architecture and Linux support.
- 32M x 16 DDR2
- 256 MB NAND Flash
- Ethernet 10/100 PHY
- 8 MB SPI Boot Flash
- Two 512Kx36 QDRII SRAM
- 8MB x 16 NOR Flash (for BPI FPGA Configuration)
- 14-Output Clock Generator with Integrated
 1.6 GHz VCO (AD9516-4)

36

White Rabbit switch status III

Better with pictures!

37

03/01/2013

www.sevensols.co / copyright © 2012

White Rabbit switch status III

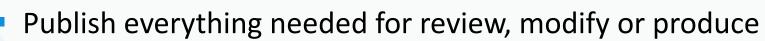
Better with pictures!

38

03/01/2013

An Open hardware model **SEVEN SOLUTIONS**

Open-hardware policy


- Subcontracting policies. Towards a service beyond subcontracting.
 - Open design and support for the customer (all materials are provided for the customer to make the full design available)
 - Flexibility in specifications and design cycle
 - Context of the design: Assimilation of previous designs by the customer.

Walking together makes friends!

The Open hardware approach

CERN license style (CERN OHL)

- Persistent license. It requires that manufactures inform designers of dates and quantities of production.
- Advantages
 - Peer-review of designs → improving reliability
 - Design re-use
 - Healthier relationship between companies and scientific centers.
- ► Designs at: Open Hardware Repository <u>http://www.ohwr.org</u>
- 7S working policy
 - Become one member more of your team.
 - Be involved at the very primary phases of our clients' designs
 - Use of Collaborative tools \rightarrow sharing results on real-time

SUMMARY AND CONCLUSIONS

7S team profile

▶ We look for engineers...

- Skillful and highly motivated (with electronics, computer science or telecommunications degrees)
- Expertise on embedded systems (FPGA, DSPs, microcontrolers, RTOS, embedded Linux, optimized C/C++, CUDA, etc..)
- Fluent in English, team players
- Ready to face new challenges!

Summary & Conclusions

- ▼ 7S is a high-tech company focused on embedded platforms design and real-time image processing.
 - Systems customization as an important company advantage
- ▲ 7S creates solutions where conventional products cannot be used.
 - deep customization and development.
- We need embedded systems engineers!

José Rodríguez (jrodriguez@sevensols.com)

(+34) 958 285 024 (+34) 690 962 646 www.sevensols.com

C/Baza, parcela 19 Nave 3 \ P.I. Juncaril \ 18210 – PELIGROS – GRANADA - SPAIN